Stability of Cubic Functional Equation in the Spaces of Generalized Functions

نویسندگان

  • Young-Su Lee
  • Soon-Yeong Chung
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Approximate Solutions of the Generalized Radical Cubic Functional Equation in Quasi-$beta$-Banach Spaces

In this paper, we prove the generalized Hyers-Ulam-Rassias stability of the generalized radical cubic functional equation[    fleft( sqrt[3]{ax^3 + by^3}right)=af(x) + bf(y),]    where $a,b in mathbb{R}_+$ are fixed positive real numbers, by using direct method in quasi-$beta$-Banach spaces. Moreover, we use subadditive functions to investigate stability of the generaliz...

متن کامل

Generalized hyperstability of the cubic functional equation in ultrametric spaces

‎In this paper‎, ‎we present the‎ generalized hyperstability results of cubic functional equation in‎ ‎ultrametric Banach spaces using the fixed point method‎.

متن کامل

Cubic-quartic functional equations in fuzzy normed spaces

In this paper, we investigate the generalizedHyers--Ulam stability of the functional equation

متن کامل

Stability of generalized QCA-functional equation in P-Banach spaces

In  this paper, we investigate the generalizedHyers-Ulam-Rassias stability for the quartic, cubic and additivefunctional equation$$f(x+ky)+f(x-ky)=k^2f(x+y)+k^2f(x-y)+(k^2-1)[k^2f(y)+k^2f(-y)-2f(x)]$$ ($k in mathbb{Z}-{0,pm1}$) in $p-$Banach spaces.

متن کامل

2-Banach stability results for the radical cubic functional equation related to quadratic mapping

The aim of this paper is to introduce and solve the generalized radical cubic functional equation related to quadratic functional equation$$fleft(sqrt[3]{ax^{3}+by^{3}}right)+fleft(sqrt[3]{ax^{3}-by^{3}}right)=2a^{2}f(x)+2b^{2}f(y),;; x,yinmathbb{R},$$for a mapping $f$ from $mathbb{R}$ into a vector space. We also investigate some stability and hyperstability results for...

متن کامل

On the stability of the Pexiderized cubic functional equation in multi-normed spaces

In this paper, we investigate the Hyers-Ulam stability of the orthogonally  cubic equation and  Pexiderized cubic equation [f(kx+y)+f(kx-y)=g(x+y)+g(x-y)+frac{2}{k}g(kx)-2g(x),]in multi-normed spaces by the direct method and the fixed point method. Moreover, we prove the Hyers-Ulam stability of the  $2$-variables cubic  equation [ f(2x+y,2z+t)+f(2x-y,2z-t) =2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007